
PNEUMATIC CONVEYING

DENSE, SEMI-DENSE AND DILUITE PHASE SYSTEMS

OVERVIEW

Pneumatic conveying involves the transportation of dry powders and granular solids in pipelines using a gas stream, usually air. Based upon the material-to-air ratio, are classified as 'dense', 'semi-dense' or 'diluite' phase systems.

Suction or vacuum systems, utilize a vacuum created in the pipeline to transfer the material. Pressure systems use positive pressure to push the material along the pipeline. The sum of the characteristics of pneumatic conveying give the ability, within numerous industries, to transport products without any loss to the environment, chosing the appropriate route that can move around obstacles, multiple floor levels or between buildings.

ADVANTAGES

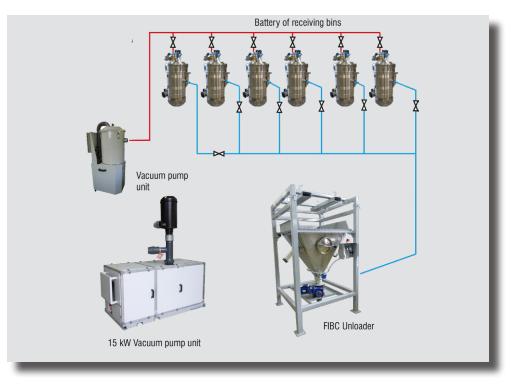
Dust-free transportation
Flexibility in transport line routing
Distribution / pickup from multiple points
Low maintenance and low manpower costs

HOW TO CHOOSE THE PERFECT PNEUMATIC TRANSPORT

DISADVANTAGES

Higher power consumption
Higher wear and abrasion of equipment
Limitations in transport distance and capacity are
High levels of skill in design, maintain and operate

	DENSE Phase	SEMI-DENSE	DILUITE Phase
Transport speed	Low (<5 m/s)	Medium (510 m/s)	High (>16 m/s)
Transport pressure	High (>3 bar)	Medium (1.53 bar)	Low (<0.6 bar)
Ware / Breakage	Very low	Average	Medium to high
Material-to-air ratio	High (>60)	Medium (2060)	Low (<20)
Function	Discontinuous	Discontinuous	Discontinuous / Continuous
Space requirements	High	High	Low to very low
Capital investment	High	High	Medium to Low


PNEUMATIC CONVEYING

DENSE, SEMI-DENSE AND DILUITE PHASE SYSTEMS

DILUITE PHASE

Diluite phase conveying is characterized by high transfer speeds, above saltation, so material «floats» into the airstream. Pressure (or vacuum) is relatively low (compared to dense phase systems).

DENSE / SEMI-DENSE PHASE

DENSE PHASE

Dense phase conveying is commonly used when materials are either abrasive or fragile. Dense phase systems operate at lower transfer speeds, higher pressures and higher product-to-air ratios. The higher available pressure permits a longer transport distance.

SEMI-DENSE PHASE

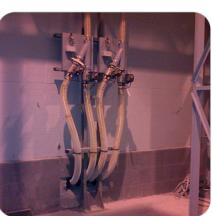
Semi-dense phase conveying is an intermediate phase between dense and diluite. Semi-dense phase systems operate at below saltation transfer speeds, with intermediate pressures and product-to-air ratios.

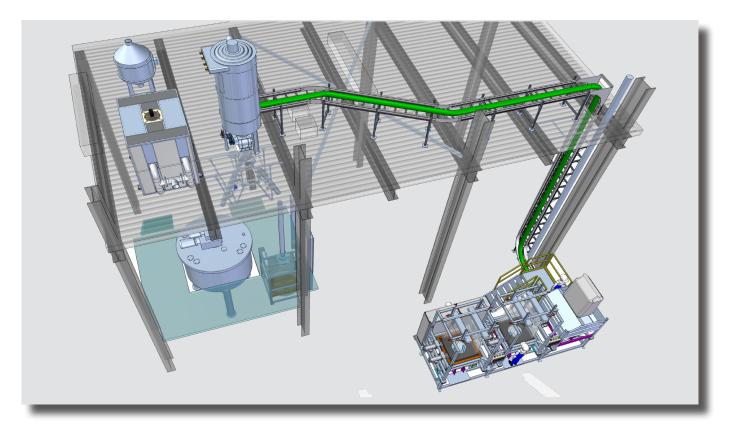
SAAD

EXAMPLES OF INSTALLATIONS AND ACCESSORIES FOR PNEUMATIC CONVEYING

Battery of loading scale hoppers

Battery of receiving bins


Vacuum pump unit & receiving cyclone / filter (continuous)


Arrival point with air filter

Multi-port automatic diverter valves

Diverter valves

Panatronik